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Abstract 

In this paper, we propose a mandarin prosodic boundary 
prediction model based on Multi-Task Learning (MTL) 
architecture. The prosody structure of mandarin is a three-level 
hierarchical structure, which contains three basic units--
Prosodic Word (PW), Prosodic Phrase (PPH) and Intonational 

Phrase (IPH) [1]. Previous studies usually decompose mandarin 
prosodic boundary prediction task into three independent tasks 
on these three unit boundaries [1-4]. In recent years, with the 
development of deep learning, MTL has achieved state-of-the-
art performance on many tasks in Natural Language Processing 
(NLP) field [5-7]. Inspired by this, this paper implements an 
MTL framework with Bidirectional Long-Short Term Memory 
and Conditional Random Field (BLSTM-CRF) as the basic 

model, and takes three independent tasks of mandarin prosodic 
boundary prediction as sub-modules for PW, PPH and IPH 
individually. Under the MTL architecture, the three 
independent tasks are unified for overall optimization. The 
experiment results show that our model is effective in solving 
the task of mandarin prosodic boundary prediction, in which the 
overall prediction performance is improved by 0.8%, and the 
model size is reduced by about 55%. 

Index Terms: prosodic boundary prediction, mandarin, Multi-
Task Learning, BLSTM-CRF 

1. Introduction 

Prosody structure plays an important role in naturalness and 
intelligibility of mandarin speech synthesis. Unlike English, 
mandarin is a kind of continuous writing language, so the 

prosody structure of mandarin is more complex than that of 
English. In general, mandarin prosody structure is defined as a 
three-level tree structure including Prosodic Word (PW), 
Prosodic Phrase (PPH) and Intonational Phrase (IPH) [1]. For 

example, the mandarin sentence "本文主要研究韵律结构的

预测  (This paper mainly studies the prediction of prosody 

structure)", its prosody structure analysis result is shown in 
Figure 1. The leaf nodes in bottom layer are Chinese Character 

(CC), several CCs can be combined into Lexicon Word (LW), 
several LWs can be combined into PW, then PWs to PPH, and 
PPHs to IPH. 

In recent years, with the development of speech synthesis 

technology, many researchers also carried out relevant 
researches on mandarin prosodic boundary prediction. Based 
on previous studies, [2] use abundant information of syntactic 
features to improve the performance of mandarin prosodic 
boundary prediction. Zheng make use of joint learning of word 
embedding and fusion of different word-level models to 
improve the performance [3]. And then they also employ 
BLSTM-CRF model based on Chinese character features to 

predict mandarin prosodic boundaries, and achieved a good 

result [4]. In brief, previous studies on mandarin prosodic 
boundary prediction mainly focused on two main aspects:  

1) studying the impact of different kinds of features [1,2,4];  

2) exploring suitable models and architectures [3-4]. 
In previous studies, the task is usually decomposed into 

three independent subtasks: PW, PPH and IPH, which are 

modeled and processed respectively. This modeling method 
ignores the dependencies among subtasks, which may degrade 
the overall performance. 
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Figure 1: Example of mandarin prosody structure. 
(Note: CC-Chinese Character, LW-Lexicon Word, 
PW-Prosodic Word, PPH-Prosodic Phrase, IPH-

Intonational Phrase) 

This paper proposes a mandarin prosodic boundary 
prediction model based on MTL, which regards PW, PPH and 
IPH as three subtasks, and uses BLSTM-CRF as the basic 
model for each subtask respectively. The three subtasks are 
optimized in a single MTL framework. As shown in Figure 1, 
general input features of subtasks, such as Chinese character, 
Chinese word segmentation, part of speech, word length and 
distance features, could be shared among subtasks by 

parameters of neural network layers. The relation among 
subtasks can be represented by adding appropriate connections 
between the corresponding modules. In training stage, the 
model is adjusted according to the overall loss of all subtasks, 
and the global optimal solution could be obtained theoretically. 

2. MTL-based mandarin prosodic 

boundary prediction model 

Figure 2 shows the structure of our mandarin prosodic boundary 
prediction model based on character-level features. There are 
two parts in the model: 1) feature sharing module, where model 
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parameters are shared among subtasks; 2) task-specific module, 

with the connections between input and output of subtasks to 
reflect the relations among subtasks. For example, both PPH 
and IPH use the output of the PW subtask as input, so PW will 
be used as part of the input of the PPH and IPH subtask. 
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Figure 2: The general architecture of mandarin 
prosodic boundary prediction model based on MTL. 
(Note: CC-Chinese Character, CWS-Chinese Word 
Segmentation, POS-Part of Speech, wLen-Length of 
word, wDist-Distance of word, FNN-Feedforward 
Neural Network, Concat-concatenation, MFNN-

Multilayer Feedforward Neural Network) 

2.1. Feature sharing module 

In this paper, character-level features are used as input, 

including Chinese character (CC), Chinese word segmentation 
(CWS), part of speech (POS), word length (wLen), word 
distance (wDist) and so on. The feature sharing module 
transforms each kind of one-hot feature into embedded feature 
through separate Feedforward Neural Network (FNN) first. For 

example, assuming the size of dictionary is ��� and embedding 

dimension is ���, the embedded feature of CC can be obtained 
by the following formula: 

����� = �	×���
× 
���×���

+ ���                (1) 

Among them, 
���×���
 is the weight matrix of CC embedding, 

���  is the bias term, �	×���
 is the one-hot feature and �����  

is the feature embedding. Similarly, the embedded features of 

CWS, POS, wLen and wDist are calculated as follows: 

������ = �	×����
× 
����×����

+ ����           (2) 

������ = �	×����
× 
����×����

+ ����           (3) 

������� = �	×���� 
× 
���� ×���� 

+ �����       (4) 

�����!"# = �	×��$%&'
× 
��$%&'×��$%&'

+ ���!"#      (5) 

After feature embedding, a multi-layer Feedforward Neural 

Network (MFNN) with tanh activation function is added to 
enhance feature extraction. MFNN sub-network embeds and 

splices all the features as input and output a whole feature 

embedding (�)*�+,�- by the following formulas: 

(�)*�.�/0# = 
1����� ; ������ ; ������ ; �������; �����!"#3    (6) 

(�)*�+,�- = �(��#0�ℎ4(�)*�.�/0#5             (7) 

2.2. Task-specific module 

As shown in Figure 2, we decomposed the mandarin prosodic 
boundary prediction task into three subtasks, and used BLSTM-
CRF as the basic model to deal with each subtask separately. 
Then, we applied MTL to unify the subtasks under one 
framework for overall optimization. 

For PW subtask, as it does not depend on any other subtasks, 
so it only takes the whole feature embedding as input. Then we 
obtain the PW prediction result 6
78�-  through �9:*� −
<=(�� sub-network. The formal description is as follow: 

 6
78�- = �9:*� − <=(��4(�)*�+,�-5              (8) 

For PPH subtask, it depends on the PW prediction. So, 
besides taking the whole feature embedding as input, it also 
uses PW prediction result. In order to keep the input dimension 

unchanged, an FNN layer with tanh activation function is added 
to fuse the whole feature embedding and PW prediction result. 
The formal description is as follow: 

66>!� = (��#0�ℎ?@(�)*�+,�-; 6
78�-AB          (9) 

Then through the �9:*� − <=(��C  sub-network, we can get 
the PPH prediction result 66>78�-. The formal description is 

as follow: 

66>78�- = �9:*� − <=(��C466>!�5              (10) 

For IPH subtask, it depends on the prediction result of PW 

and PPH subtask both, so we take the whole feature embedding 
and PW/PPH prediction results as input. Similarly, for the sake 
of keeping the input dimension unchanged, an FNN layer with 
tanh activation function is added to fuse the whole feature 
embedding and the prediction results of PW and PPH. The 
formal description is as follow: 

D6>!� = (��#0�ℎ?@(�)*�+,�-; 6
78�-; 66>78�-AB (11) 

Then we can obtain the IPH prediction result D6>78�- by the 

�9:*� − <=(E�C  sub- network. The formal description is as 
follow: 

D6>78�- = �9:*� − <=(E�C4D6>!�5            (12) 

In accordance with the above treatment, we can get three 
prediction results of PW, PPH and IPH at one time, and then the 
complete result of prosody prediction can be obtained by simple 
merging processing. The label merging process is the reverse 
process of the decomposition process, and the specific 
operations can be referred to Section 3.2. 

2.3. Loss function 

We take the mandarin prosodic boundary prediction as a whole 
task, so we merge the losses of all subtasks into a whole loss. 
The loss of each subtask is formally described as follows: 

9FGG�� = <FGH��?6
78�- , 6
0�"B             (13) 

9FGG��C = <FGH��C?66>78�- , 66>0�"B          (14) 

9FGGE�C = <FGHE�C?D6>78�- , D6>0�"B            (15) 

In which, <FGH∗  is loss function of subtasks, 6
0�", 66>0�" 

and D6>0�" are answer label sequence of subtasks. Then, we 
can obtain the whole loss by weighted summation of the losses 
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of each subtask. Assuming that 
�� , 
��C  and 
E�C  are 
weight coefficients of subtask losses of PW, PPH and IPH 

respectively, the overall loss can be obtained as follow: 

9FGG#.#0K = 
�� ∗ 9FGG�� + 
��C ∗ 9FGG��C  
+
E�C ∗ 9FGGE�C                             (16) 

Among them, the weight coefficient of subtasks can be set 
according to experience, and also can be obtained by other 
methods such as grid search. 

3. Experiment 

In order to verify the effectiveness of the proposed method, we 
take BLSTM-CRF as the benchmark model, and construct three 
mandarin prosodic boundary prediction models based on 
character-level features for PW, PPH and IPH respectively. The 
construct of MTL model refers to section 2. 

3.1. Dataset and evaluation metrics 

As there is no public dataset for mandarin prosodic boundary 
prediction task, the experimental data used in this paper is from 
Databaker1, which is labelled by two linguistic experts with rich 

experience. The tagging results have been double-checked to 
ensure the consistency and accuracy. The dataset contains about 
150,000 sentences, which is divided into training set and test set 
with ratio 9:1. The statistical information of experimental data 
is shown in Table 1. 

Table 1: Basic Statistical information of dataset.  

Type Training set Test set 

Sentence 134,997 15,000 

CC 2,693,395 299,061 

PW 731,074 81,254 

PPH 192,668 21,416 

IPH 231,774 25,807 

 

The experimental results were evaluated comprehensively 
by accuracy (ACC), recall (REC) and F1 value (F1). 

3.2. Data preprocessing 

The data pretreatment process is introduced through the same 
example sentence in section 1. As shown in Figure 3, data 
pretreatment mainly includes the following four steps: 

 1) recovering the labeled prosody sample into original 
sentence; 

2) obtaining CWS and POS information of original sentence 
through related tools;  

3) getting word length and distance information based on 
CWS and POS results from step 2;  

4) aligning all information extracted in the first three steps 
to CC-level. There is some special processing involved in 
the alignment: the CWS information needs to be 
converted into ‘BMES’ labels, and word length 
information needs to be transformed into position index 
of CC in the word by two directions, and word distance 

information needs to be converted by a similar measure 
for word length.  

                                                             

 
1 http://www.data-baker.com/index_en.html 

All CC-level input features can be obtained through the above 

four steps. The word segmentation and part-of-speech tagging 
tools used in this paper come from an existing internal toolkit 
which is based on CRF model. 
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Figure 3: Example of Chinese character-level features 
extraction process. (Note: CWS-Chinese Word 

Segmentation, POS-Part of Speech, word Distance-
Distance of current word to head and tail of sentence) 

When the input Chinese character-level features are ready, 
we process the output sequence. First, we can easily extract 
mixed label sequence from labeled prosody sample. Then, we 

can obtain single label sequence of PW, PPH and IPH based on 
mixed label sequence. Among them, PPH and IPH labels need 
to be degraded to PW labels in PW single label sequence, and 
IPH labels need to be degraded to PPH labels in PPH single 
label sequence. The conversion process is described in Figure 
4. 
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Figure 4: Example of prosodic label sequence process.  
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3.3. Contrast experiment I 

This group of comparative experiments compare the 
performance between BLSTM-CRF based single task models 
and MTL model. The key hyperparameters of the four models 
are set by the same value, such as batch size, embedding 

dimension, number of hidden units and layers about BLSTM 
and so on. In addition, the loss weight ratio of PW, PPH and 
IPH in MTL model is set to 1.0:1.0:1.0. The experimental 
results are shown in Table 2. 

Table 2: Experimental results of benchmark models 
and MTL model.  

Model Label ACC REC F1 

BLSTM-
CRF 

PW 96.85% 98.06% 97.45% 

PPH 84.41% 82.40% 83.40% 

IPH 88.99% 88.51% 88.74% 

MTL 

PW 96.63% 98.24% 97.43%↓  

PPH 83.91% 83.86% 83.89%↑  

IPH 88.87% 89.30% 89.09%↑  

 

Compared with the benchmark model, F1 value of MTL 
model on PPH and IPH task is improved by 0.49% and 0.35% 
respectively, and the F1 value of PW task has a slight decrease 
of 0.02%.  

Table 3: Size of benchmark models and MTL model.  

Model Label Model Size 

BLSTM-
CRF 

PW 5.3MB 
PPH 5.3MB 
IPH 5.3MB 

MTL 

PW 

PPH 

IPH 

7.1MB 

 

About the model size, which shown in Table 3, the total size 
of MTL model is about 45% of benchmark model, and is more 
compact. Benefited from sharing some model parameters in 
MTL model, the size of MTL model is significantly reduced 

when compared with benchmark models. That is of great 
benefit for engineering (memory occupancy, CPU resource 
consumption, etc.). Therefore, in a practical point of view, MTL 
model will be a better choice for product and service on the 
premise that performance indicators are comparable. 

3.4. Contrast experiment II 

We fixed other hyperparameters, and compared the prediction 
performance under different loss weight ratios of PW, PPH and 

IPH in MTL model. According to our experience, the order of 
importance about mandarin prosodic labels in mandarin speech 
synthesis is: PW < PPH < IPH, so we set loss weight ratio to 
0.5:1.0:2.0. The experimental results are shown in Table 4. 

From the result, we find that, with the emphasis on IPH loss 
and the decrease on PW loss, the F1 value of IPH task increases 
about 0.06%, while that of PW and PH task decrease 0.11% and 
0.18% respectively. Relatively, the prediction performance 
under loss weight ratio of 0.5:1.0:2.0 is lower than expected. 

 

 

Table 4: Experimental results of MTL models under 
different loss weight ratios.  

Loss 

Weight 

Ratio 

Label ACC REC F1 

1.0:1.0:1.0 

PW 96.63% 98.24% 97.43% 

PPH 83.91% 83.86% 83.89% 

IPH 88.87% 89.30% 89.09% 

0.5:1.0:2.0 

PW 96.68% 97.98% 97.32%↓  

PPH 84.54% 82.90% 83.71%↓  

IPH 89.25% 89.04% 89.15%↑  

4. Conclusions 

In this paper, we propose an MTL-based mandarin prosodic 
boundary prediction model. Based on the BLSTM-CRF model, 
PW, PPH and IPH subtasks are modeled respectively. And then, 
MTL is used to integrate the three subtasks into one framework 
for overall optimization. From the perspective of model 
performance and model size, MTL model is better than 

BLSTM-CRF based single task model, and more suitable for 
engineering applications. In the future, we will explore the 
following aspects: 1) adding pre-training word vector as input; 
2) optimizing the method of adjusting the loss weight ratio of 
PW, PPH and IPH. Some scholars have done some researches 
on this problem recently [8-9]. In the future, this kind of method 
will be used to optimize the performance of mandarin prosodic 
boundary prediction further. 
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